风流老太婆BBB有毛_国产东京热无码av_京东热app免费下载方法_99这里都是精品这里有精品_春色视频一区二区三区_成成网站在线国产播放_扒开双腿猛烈进入高H乱骨科_亚洲综合精品人成_日韩视频无码中字免费观_911在线人人视频国产

前沿顯微成像技術(shù)專(zhuān)題之:光片熒光顯微鏡(一) - 分析行業(yè)新聞
來(lái)源: | 發(fā)布日期:2023-02-14 16:07
 

在過(guò)去二十多年中,光學(xué)顯微成像技術(shù)發(fā)展迅速,不斷突破傳統(tǒng)極限。生命科學(xué)研究,要求成像系統(tǒng)在不影響生物活性的前提下,實(shí)現(xiàn)更大視野,更高分辨率,更高速度的三維成像。這也意味著對(duì)成像探測(cè)器 - 科研相機(jī)的要求也越來(lái)越高。

從本周開(kāi)始,我們將為大家?guī)?lái)前沿顯微成像技術(shù)專(zhuān)題系列,和大家一起探討前沿的顯微成像技術(shù)以及他們對(duì)科研相機(jī)的相關(guān)性能要求。

首期我們的主角是近年來(lái)廣受關(guān)注和發(fā)展的光片熒光顯微鏡(Light Sheet Fluorescence Microscopy) 。

光片熒光顯微鏡的誕生

大家知道,傳統(tǒng)的寬場(chǎng)熒光顯微鏡通過(guò)物鏡將激發(fā)光聚焦,同時(shí)收集樣品的熒光信號(hào)成像。觀察其照明方式(圖1)不難發(fā)現(xiàn),雖然焦平面上的光*強(qiáng),但其上下的樣品也會(huì)被照亮,導(dǎo)致以下局限性:

  • 引入額外的光毒性,影響樣品生物活性,甚至造成細(xì)胞死亡;

  • 成像焦平面以外的干擾信號(hào)進(jìn)入圖像,導(dǎo)致圖像分辨率和反差降低。

圖1 寬場(chǎng)顯微鏡照明方式示意 (Brad Amos, Medical Research Council, Laboratory of Molecular Biology, Cambridge)


激光掃描共聚焦使用點(diǎn)掃描方法,通過(guò)在探測(cè)端引入針孔,濾除了焦平面以外的雜散光,使分辨率,特別是Z軸方向的分辨率得到了提升,能夠?qū)崿F(xiàn)三維成像。但是,當(dāng)激發(fā)光聚焦時(shí),仍然會(huì)照亮上下區(qū)域(圖2)。由于使用點(diǎn)掃描方式成像,為達(dá)到較快光的速度,光束照射每個(gè)點(diǎn)的時(shí)間很短,成像元件(PMT)的量子效率又很低,需要更強(qiáng)的激發(fā)功率。與傳統(tǒng)寬場(chǎng)熒光顯微鏡相比,光漂白和光毒性更加嚴(yán)重。

圖2 激光掃描共聚焦照明方式示意:左圖(單點(diǎn)被照亮?xí)r)右圖(掃描成像)(Adapted from Brad Amos, Medical Research Council, Laboratory of Molecular Biology, Cambridge)


1990年發(fā)明的雙光子激光掃描顯微鏡是減少光毒性的一個(gè)好方法。由于使用近紅外激光照明,對(duì)活體樣品的光毒性大大降低,并且能夠穿透更深的樣品。但是,雙光子的信號(hào)很弱,采集速度非常慢,不適合對(duì)大樣品進(jìn)行動(dòng)態(tài)成像。而且其昂貴的成本也限制了應(yīng)用范圍。

聽(tīng)起來(lái)要同時(shí)滿(mǎn)足大視野,高分辨率,高速度和低的光損傷是一件令人頭禿的事,不過(guò)這是難不倒科學(xué)家們的。
事實(shí)上早在1903年,席格蒙迪(Richard Zsigmondy)和西登托夫(Henry Siedentopf)就發(fā)明了通過(guò)一個(gè)狹縫生成光片照明的超顯微鏡(Ultra microscope),但是他們的方法并未進(jìn)一步發(fā)展到熒光成像。
直到1993年,華盛頓大學(xué)Voie和他的同事提出了正交平面熒光切片技術(shù) (Orthogonal Plane Fluorescence Optical Sectioning,OPFOS)。
2004年,Ernst Stelzer和同事進(jìn)一步發(fā)展了這個(gè)idea,搭建出一臺(tái)新的熒光顯微鏡,他們稱(chēng)之為SPIM(單平面照明顯微鏡, Selective / Single Plane Illumination Microscopy),也就是我們現(xiàn)在所知道的光片熒光顯微鏡。

什么是“光片”?

光片顯微鏡與傳統(tǒng)顯微鏡的不同在于激發(fā)光的照明方式。它的照明光是一張與成像面平行的薄薄的“光片”(圖3),只有焦平面的樣品被照亮,而其上下的樣品不受影響。

圖3 光片顯微鏡照明方式示意


和傳統(tǒng)熒光照明方式相比,光片照明有如下優(yōu)點(diǎn):

  1. 提高了圖像和背景的反差(Signal-to-Background Ratio) 和軸向分辨率:光片照明技術(shù)保證了焦平面上下的樣品不會(huì)被激發(fā),具備和共聚焦顯微鏡類(lèi)似的光學(xué)切片功能;

  2. 減少了光漂白和光毒性:與傳統(tǒng)的熒光照明技術(shù)相比,光毒性可以被降低20-100倍,這樣,我們就能在更接近生理狀態(tài)的條件下,對(duì)活體生物樣品進(jìn)行長(zhǎng)時(shí)間的三維成像;

  3. 與激光共聚焦和雙光子顯微鏡使用低QE的PMT的點(diǎn)掃描成像相比,光片顯微鏡使用高QE的CCD或sCMOS相機(jī)進(jìn)行面成像,大大提高了成像速度和圖像的信噪比。共聚焦需要幾分鐘甚至幾小時(shí)才能拍完的樣品,用光片顯微鏡只需要幾秒到幾分鐘。因此,光片顯微鏡也特別適合用于大樣品成像。

在多數(shù)光片系統(tǒng)中,光學(xué)元件是固定的,需要移動(dòng)樣品 (或使光片從xyz方向掃過(guò)樣品) 來(lái)獲得完整的3D圖像。通過(guò)移動(dòng)或旋轉(zhuǎn)樣品,可以對(duì)大樣品進(jìn)行成像,并從多個(gè)角度拍攝,將這些多視角圖像通過(guò)特別算法融合在一起后,能夠進(jìn)一步提高圖像分辨率,并修正一些光片技術(shù)特有的缺陷。

總之,光片熒光顯微鏡從設(shè)計(jì)原理上,大大降低了激發(fā)光對(duì)活體樣品的光毒性和光漂白,天生具有光學(xué)切片能力,使用高量子效率的CCD或sCMOS探測(cè)器,是大視野,高速,高分辨率三維活體顯微成像的理想工具。

“光片”的實(shí)現(xiàn)

產(chǎn)生光片*簡(jiǎn)單的方法是在光路中引入一個(gè)圓柱形透鏡。通過(guò)該透鏡的光,寬度維持不變,但在高度上被壓縮成平面 (圖4),然后通過(guò)照明物鏡,在焦面上形成“光片”。成像物鏡垂直于照明物鏡放置,并聚焦在光片上獲取熒光信號(hào)。

圖4 圓柱形透鏡 (Edmund光學(xué))


使用這種方法生成的光片,其寬度和厚度由照明物鏡的NA值決定。如圖5所示,照明光束的實(shí)際形狀是一個(gè)兩頭寬,中間細(xì)的“沙漏”形。ω0為光束腰厚度,也就是光片厚度,b為均勻照明寬度,也就是有效視野。

圖5 光片特性(箭頭指示激發(fā)光束的方向)


有如下公式:


因此,使用NA較小的照明物鏡,能夠?qū)崿F(xiàn)較寬范圍的均勻照明,即視野更大;但是相應(yīng)的,光片的厚度也越大,導(dǎo)致軸向分辨率降低。而高NA物鏡產(chǎn)生的光片視野會(huì)比較小,但軸向分辨率較好。

要注意的是,如果成像物鏡的NA值很高,使得其景深小于光片的厚度,那么系統(tǒng)的軸向分辨率主要是由成像物鏡的景深決定。但這時(shí)會(huì)產(chǎn)生普通熒光照明時(shí)具有的問(wèn)題,即焦面上下的部分樣品會(huì)被照亮,不必要的光毒性和雜散光會(huì)對(duì)成像效果產(chǎn)生負(fù)面影響。
如果成像物鏡的NA值較低,光片厚度比它的景深要小,那么系統(tǒng)的軸向分辨率就由光片的厚薄來(lái)決定。

好啦!說(shuō)了這么多,大家對(duì)光片顯微鏡是否有了一個(gè)基本印象了呢?什么?有點(diǎn)抽象?別急,在后面幾期中,我們將為大家詳細(xì)介紹“光片”的各種實(shí)現(xiàn)方式和不同的光片顯微鏡應(yīng)用,敬請(qǐng)期待!


References

Huisken J, Swoger J et al. (2004) Optical sectioning deepinside live embryos by selective plane illumination microscopy. Science. Aug 13;305(5686):1007-9

Huisken, J. & Stainier, D. Y. R. (2009) Selective plane illumination microscopy techniques in developmental biology. Development. Jun;136(12):1963-75.

VoieA. H., Burns ??????y????????V3910 , D. H., Spelman, F. A. (1993) Orthogonal-plane fluorescenceoptical sectioning: three-dimensional imaging of macroscopic biologicalspecimens. J Microsc. Jun;170(Pt 3):229-36.

Weber M, Mickoleit M and Huisken J (2014) Light Sheet Microscopy. Methods in Cell Biology. Jan 01; 123:193-215.


【本文標(biāo)簽】

【責(zé)任編輯】微儀顯微鏡

相關(guān)資訊